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Recently, we reported that the reagent combination PhIO/ 
TMSN3 rapidly converts /V./V-dimethylanilines into iV-(azido-
methyl)-7V-methylanilines at 0 0C, in excellent yields, eq I.1 As 
an extension of this work, we report the oxidation of amides, 
carbamates, and ureas using PI1IO/TMSN3 or o-iodosylbenzoic 
acid/TMSN3 in dichloromethane, to give a-azido derivatives, 
Scheme 1. The only known a-azido amides were previously 
reported in a study of 4-substituted azetidinones.2 

Scheme 1 

ArNMe2 + PhIOZTMSN3 
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Table I, lists the results of a systematic study of pyrrolidine 
and piperidine derivatives, Scheme 1, X = Ph, C6H4NO2-P, C6H4-
OMe-p, C6H2(3,4,5-OMe), NPh2, OPh, OCH2Ph (Cbz), OBu-/ 
(BOC), and Me. Two sets of conditions (A or B) were employed, 
and all reactions were allowed to proceed for 15 h. For example, 
TMSN3 (4.8 equiv) was added to a suspension of PhIO (2.4 
equiv) in CH2Cl2 at -40 0C. The amides 1 or 4 were added to 
the suspension, which was warmed to -25 0C, and stirred under 
argon overnight. Raising the temperature above -20 0C leads 
to rapid evolution of dinitrogen and destruction of the suspected 
reactive intermediate(s).3 

The pyrrolidine derivatives 1 are considerably more reactive 
than the piperidine derivatives 4, and the rate (and yield) of 
a-azidonation increases with respect to the electron-donating 
ability of X. The rate of the a-azidonation process competes 
with the rate of decomposition of the reactive intermediate(s) 
(N2 evolution), and for the less reactive amides (X = C6H4-
N02-p) there is a considerable amount of remaining starting 
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• 3N2 + TMS2O 

We have speculated that the adducts i and ii are present, and may be responsible 
for the observed dehydrogenation chemistry, although this is not known. 
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" PhIO (2.4 equiv)/TMSN3 (4.8 equiv)/CH2Cl2, -40 0 C or warm to 
-25 °C. * o-Iodosylbenzoic acid (2.4 equiv)/TMSN3 (4.8 equiv)/CH2Cl2, 
reflux. 'Starting material remaining; ( ) not isolated 1H NMR. 
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material.4 The best conversion was observed for the urea 1 (X 
= NPh2) [>95% into 2 (X = NPh2) by 1H NMR, the structure 
of product was confirmed by X-ray crystallography] .5 Good 
conversions in the pyrrolidine series were also possible at -5 0C 
by using a large excess of PhIO (5 equiv)/TMSN3 (10 equiv) 
(rapid effervescence of dinitrogen was initially observed). Isolated 
yields of 71% for the carbamate 2 (X = OPh) and 61% for the 
urea 2 (X = NPh2) were obtained. In all cases except BOC 
(entry 8), small amounts (ca. 5%) of side products resulting from 
further reaction of the a-azido products wereobserved. The BOC 
derivative (entry 8) proved to be the most reactive, and the diazides 
8/8a were the major products. At lower temperatures (-40 to 
-25 0C) using PhIO/TMSN3 the trans diastereomer of the 2,5-
disubstituted diazido 8 [X = C6H2(3,4,5-OMe), X-ray] species 
predominated, Scheme 2.5 

It appears that not only is the a-azidonation slower in the 
piperidine series (under the same reaction conditions) and lower 
yielding, but also the a-azido amides 5 are less stable. In entries 

(4) We have treated the corresponding sulfonamides with PhIO/TMSN3 
and isolated the a-azido derivatives in low yields. They are less reactive than 
the p-nitrobenzamides. 

(5) The structures of the azides 2 (X = NPh2), 8 [X = C6H2(3,4,5-OMe)] 
and the tricyclic urea 12 were confirmed by single-crystal X-ray crystallography. 

0002-7863/94/1516-4501$04.50/0 © 1994 American Chemical Society 



4502 /. Am. Chem. Soc, Vol. 116, No. 10, 1994 Communications to the Editor 

1, 3, 4, and S the a-azido amide 5 eliminates azide ion to give 
the enamide 6, thus reducing the yields. The pyrrolidine a-azido 
amides 2 are stable under the reaction conditions and do not 
eliminate azide (hydrazoic acid) to give the enamide 3. 

To attempt to overcome the problem of preferential decom­
position of the reactive intermediate(s) [PhI(OTMS)N3] a more 
stable aryl iodosyl reagent was required. o-Iodosylbenzoic acid 
was substituted for PhIO (conditions B).6 The intermediate 
produced on treatment with TMSN3 was found to have a greatly 
enhanced stability. Rapid evolution of dinitrogen was observed 
only on performing these reactions in 1,2-dichloroethane at 
temperatures higher than 60 0C. In a typical procedure TMSN3 
(4.8 equiv) was added to a suspension of o-iodosylbenzoic acid 
(2.4 equiv) in CH2CI2. The mixture was stirred at room 
temperature for 10 min, followed by addition of the amides 1 or 
4. The resulting suspension was heated at reflux and became 
homogeneous after 1-2 h. AU reactions, except entry 6, showed 
complete disappearance of starting material; however, yields of 
a-azidonation were lower due to further reactions of the initially 
formed a-azido amide 2. Exposure of the a-azido benzamide 2 
(X = C6H4OMe-p) to the o-iodosylbenzoic acid/TMSN3 reagent 
combination yielded two previously undetected products, the 2,3-
diazido adduct 7 [38% (X = C6H4OMe-p)], 8 [16% (X = C6H4-
OMe-p)], and the cyano formamide 10 [10% (X = C6H4-
OMe-p)].7 Treatment of the urea 1 (X = NPh2) with 0-
iodosylbenzoic acid/TMSN3 in 2-nitropropane at 50 0C gave 
the corresponding formamide 10 (49%) and the 2,3-diazido 
compound 7 (15%). Presumably formation of both the formamide 
and the 2,3-diazido compound results from an intermediate 
enamide 3. The enamide 6 was isolated in the piperidine series, 
but not in the pyrrolidine series. Heating 2 (X = NPh2) gave the 
enamide 3 [6% (X = NPh2)], (iVyV-diphenylcarbamoyl)pyrrole 
(7%), 2 [11% (X • NPh2)], and the nitrile 9 [trace (X = NPh2)], 

The chemistry of the a-azido amide functionality was briefly 
explored. First, to establish a connection with acyliminium 
chemistry, and secondly, to see if there are any differences.8 

Treatment of 2 (X = NPh2) in methanol, at reflux in the presence 
of silica gel, gave the corresponding a-methoxy amide 11 (86%). 
This transformation is equivalent to that seen in the electro­
chemical oxidation of similar substrates by Shono.9 Intra­
molecular trapping of the ./V-acyliminium ion was also possible 
via aromatic electrophilic substitution of the urea in the presence 
OfTiCl4 (3 equiv) to give 9 and 12 (30% and 49%, respectively),5 

whereas 11 under the same Lewis acid conditions as above gave 
only 12 (74%). 1,3-Dipolar cycloadditions of the a-azido amide 
2 to dimethyl acetylenedicarboxylate proceeded with simultaneous 
migration of the triazole to give 14 (via 13) (Scheme 3). 
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' (a) MeOH, Si02/reflux (86%). (b) TiCI4 (3 equiv)/1,2-dichloro­
ethane, reflux (49% and 30%). (c) Dimethyl acetylenedicarboxylate/ 
CH2Cl2, reflux (77%). 

PhlO/TMSN. 

The evident increased reactivity of the pyrrolidine derivatives 
compared with the piperidine derivatives was explored in the 
following experiments. Treatment of a 1:1 mixture of 1 (X = 
OPh) and 4 (X = OPh) with PhIO/TMSN3 at -25 0C gave 2 
[69% (X = OPh)], 5 [28% (X = OPh)], and 8 [7% (X = OPh)]. 
The mixed bis-amide 15 was treated under the usual azidonation 
conditions (A) and gave as the only isolable product the a-azido 
pyrrolidine derivative 16 (32%) (Scheme 4). 

Currently, we are examining the reactions of the ArIO/TMSN3 
reagent combinations with proline derivatives and the development 
of different ArIO reagents. 
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